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1 Introduction

In recent years there has been an increasing focus on the process that governs how agents match with

each other in spatial settings. For instance, how do taxis meet passengers? How does a bulk ship meet

a cargo owner? How do exporters meet importers? A nascent literature on transportation (Buchholz

(2018); Frechette et al. (2018); Brancaccio et al. (2018)- henceforth, BKP) have modeled this process

using a matching function, which is a reduced-form approach of modeling who matches with whom in a

decentralized market. This function, which has been used extensively in labor market models to study

employment outcomes, takes as inputs the stocks of searching agents on either side of the market and

dictates the number of matches to be formed. The matching function captures the nature of frictions in

our models.

In this paper, borrowing from our previous work, we discuss an estimation method for matching

functions in spatial models. In this context, it is often the case that data is very rich on the supply

side, but scant on the demand side. For instance, Buchholz (2018) and Frechette et al. (2018) employ

rich information on taxi rides, but do not observe hailing passengers. BKP observe rich ship movements,

but do not observe searching exporters. Similarly, Eaton et al. (2016) employ data on matches between

importers and exporters, but the set of potential importers is not known with certainty.1

A second issue with the empirical matching function is the need for flexibility. Indeed, the matching

function captures the nature of search frictions in the market in a parsimonious fashion; as such, it may

capture a host of different features, such as “information imperfections about potential trading partners,

heterogeneities, the absence of perfect insurance markets, slow mobility, congestion from large numbers,

and other similar factors” (Petrongolo and Pissarides, 2001). Therefore, a flexible functional form is of

utmost importance, as the shape of the matching function is key for welfare and policy implications as

shown in Hosios (1990) and more recently in Brancaccio et al. (2019). In addition, the results of any

quantitative exploration, such as the ones mentioned above, depend crucially on the matching function

specification.

Our approach deals with both having data on only one side of the market, as well as allowing for

flexibility. We draw from the literature on nonparametric identification (Matzkin, 2003) and non-separable

instrumental variable techniques (e.g. Imbens and Newey, 2009). Roughly, the method leverages (i) an
1Arguably, even in labor markets observed information is imperfect; see Lange and Papageorgiou (2018). In all applications

discussed, this issue is somewhat reminiscent of the lack of information of potential entrants. In empirical entry models, as
only actual entry is observed and one does not observe potential entrants (that did not enter), it is difficult to form estimates
of entry probabilities.
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invertibility assumption between matches and sellers, (ii) the observed relationship between matches and

sellers, (iii) an instrument that shifts the number of sellers, and (iv) a restriction on the matching function

that allows us to disentangle monotonic transformations.

In this note, we present the basic estimation approach. Then, we elaborate on a number of practical

issues, such as the different restrictions that can be imposed for identification, the instruments and the

possibility of parametric restrictions. Finally, we discuss the estimation method in the context of several

empirical applications, including taxis, shipping, bike-sharing and importer-exporter matching.

2 Matching Function Estimation

2.1 Setup and Available Data

There are l = 1, ..., L locations or markets. Each location has bl buyers and sl sellers. These can be

passengers and taxicabs, exporters and ships, customers and trucks, commuters and bikes, importers and

exporters, etc. Within each location, the agents in the two sides of the market meet with the goal to

contract for a given service (e.g. a ride). The resulting matches from this interaction, ml, are given by

the function,

mlt = ml (slt, blt) .

The function ml (·) is continuous and strictly increasing in both s and b; more sellers (buyers) in the

market implies that more matches are realized.

Assumption 1. The function ml (·) is continuous and strictly increasing in both its arguments.

The matching function captures the process through which buyers meet and contract with sellers; its

focus is on the impact of the mass of each side of the market on the final count of trades.2 We allow both

the distribution of buyers and sellers, as well as the matching function to vary across l; this implies that

the geography of different locations affects the interactions between buyers and sellers. Consistent with

this, the estimation leverages time series data on the number of matches and sellers within each location.

Alternatively, one can assume that the matching function is the same in all locations and exploit the

cross-sectional variation across regions, possibly in addition to the time-series one.

Suppose that we observe a time-series dataset for each location l. We focus on the case where the data

consists of mlt, slt for l = 1, ..., L and t = 1, ..., Tl, where Tl is the sample size for market l. For instance,
2It is possible to account for heterogeneous buyers and sellers by allowing multiple types to enter the matching function.
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in BKP, we observe the number of empty ships searching each week t in geographical region l (slt), as

well as the number of ships initiating a loaded trip from each region l in week t (mlt). Geographical

regions are sets of ports. In the taxi case, we might observe the number of rides starting at a NYC block

(mlt) as well as the number of searching cabs on that block (slt); we return to this below. Naturally, the

procedure can be readily applied to the case where the econometrician observes the number of matches

mlt and buyers blt, but not the number of sellers, slt.

We want to estimate two sets of unknowns: (i) the functions ml (·), for all l; (ii) the number of buyers

blt for all l, t. The difficulty here is precisely that we want to estimate both unknowns. Indeed, if we had

data on the buyers blt, it would be trivial to obtain the matching function via a flexible approximation.

Similarly, if the matching function were known and as it is strictly increasing in both arguments, we could

invert it point-wise to obtain the buyers, so that blt = m−1 (slt,mlt).

2.2 Estimation Procedure

We next drop the subscript l for notational convenience. To obtain both unknowns, we borrow from the

literature of nonparametric identification and in particular, Matzkin (2003). Assume for now that st and

bt are independent,

Assumption 2. The number of sellers and the number buyers, st and bt, are independent across t.

We denote the distribution of the number of match realizations over time, conditional on the number

of sellers, by Fm|s = Pr (mlt ≤ m|slt = s). Note that, Fm|s is observable given the available data and can

be estimated with the frequency estimator:

F̂m|s=st
(mt|s = st) = Pr (m ≤ mt|s = st) = Pr (m ≤ mt, s = st)

Pr (s = st)
= #1 {(m ≤ mt, s = st)}

#1 {(s = st)}

where 1 {·} denotes the indicator function and # denotes the number of observations. To improve efficiency

and obtain out of sample values, in practice one may want to use a kernel density estimator (see for instance

Fan and Gijbels, 1996 or Pagan and Ullah, 1999).

Let Fb denote the distribution of the number of buyers bt. At a given point {st, bt,mt} we have:
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Fm|s=st
(mt|s = st) = Pr (m (s, b) ≤ mt|s = st)

monotonicity = Pr
(
b ≤ m−1 (s,mt) |s = st

)
independence = Pr

(
b ≤ m−1 (st,mt)

)
= Fb (bt) (1)

From this relationship the difficulty of recovering both the function m (·) and the buyers becomes

clear. Consider the equation:

Fm|s=st
(mt|s = st) = Fb

(
m−1 (st,mt)

)

The left-hand side is known; however, the right-hand side confounds the distribution of buyers Fb and the

matching function. Indeed, monotonic transformations of the two are observationally equivalent and we

cannot identify both without some restriction (for more details, see Matzkin, 2003).

For ease of exposition, suppose we were willing to assume that the distribution of buyers, Fb, is uniform

on [0,1], so that Fb (bt) = bt. Then, equation (1) becomes:

Fm|s=st
(mt|s = st) = Fb (bt) = bt

and since the left-hand-side is estimated as above, we can recover bt point-wise. Once bt is known, we can

obtain the matching function directly. Hence, knowledge of the distribution of the unobserved buyers is

sufficient to identify both the buyers and the matching function.3

The uniform assumption is likely not a good one in our case, because the scale of buyers bt is important:

for instance we require that bt ≥ mt, as there cannot be more matches than there are buyers. Indeed, the

matching function must satisfy the following property:

Condition 1. The matching function m (s, b) is bounded above by the minimum of buyers and sellers,

i.e.

m = m (s, b) ≤ min {s, b} .

What are thus some reasonable restrictions to impose? First, we can consider different distributional
3Bajari and Benkard (2005) have applied this technique in the case of demand for PCs. In their case, the unknown

function of interest is a hedonic price function and the unobservable is an unobserved product characteristic, such as quality.
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assumptions for the buyers.

Assumption 3. The distribution of buyers is known (possibly up to parameters).

For instance, we might be willing to assume that Fb is Poisson with mean λb. In that case, we can

interpret the number of buyers bt as the number of arrivals of buyers at the location every time period

(this is the assumption that Buchholz (2018) makes as well when modeling taxi passengers). In that case,

(1) becomes:

Fm|s (m|s) = Fb (b) = exp (−λb)
b∑

k=1

λkb
k! (2)

If λb were known, we could solve this equation for bt, for all t. However, as in the standard uniform case,

the parameter λb affects the scale of the estimates of the distribution F̂b and thus one might not be willing

to calibrate it a priori. For instance, one can use Condition 1, which imposes further structure on the

matching function, to pin down λb. Indeed, one might want to select λb to minimize the magnitude of

the frictions captured by the matching function m, as measured by m (s, b) −min {s, b}, in order to not

overestimate welfare loss from search frictions.4

Instead of distributional assumptions as in Assumption 3, we can instead restrict the matching func-

tion. Suppose, for instance, that we are willing to assume that the matching function features constant

returns to scale. This assumption is commonly used in labor market settings, consistent with the em-

pirical results in that context (see for instance the summary of the estimates in Petrongolo and Pissarides,

2001). Therefore a constant returns to scale matching function is probably a natural starting point here

as well, especially if we believe the nature of frictions in the spatial context is similar to those in labor

markets (such as information frictions regarding the location of potential buyers and sellers).5

Assumption 3′. The matching function exhibits constant returns to scale (CRS), so that m (as, ab) =

am (s, b) for all a ≥ 0. Moreover there is a known point
{
m̄, s̄, b̄

}
such that m̄ = m

(
s̄, b̄
)
.

Consider again the main equation (1) at the known point
{
m̄, s̄, b̄

}
. Letting a = b/b̄, for all b,

Fb
(
ab̄
)

= Fm|s=as̄
(
m
(
as̄, ab̄

)
|s = as̄

)
= Fm|s=as̄ (am̄|s = as̄) . (3)

4In this case, we choose λb to minimize the absolute difference
∑T

t=1 |m (st, bt)−min {st, bt}| between the potential and
realized trades, subject to the constraint that m (st, bt) ≤ min {st, bt} for all t.

5The search literature often regards search frictions as a shortcut for the costly acquisition of information regarding the
location of buyers and sellers (see e.g. Mortensen, 1978 and Pissarides, 2000). This interpretation naturally carries forward
in the spatial context as well.

6



We use (3) and vary a to trace out F̂b(b) for all b, relying on a kernel density estimator for the conditional

distribution F̂m|s=as̄ (am̄|s = as̄) as discussed above. Once the distribution F̂b is recovered, we obtain the

number of buyers bt from

bt = F̂−1
b

(
F̂m|s=st

(mt|s = st)
)
,

and the matching function at any point (s, b) from

m (s, b) = F̂−1
m|s (Fb (b)) .

The remaining question is how to choose the known point,
{
m̄, s̄, b̄

}
. One option is to choose this

point to be of the form 1 = m(s̄, 1), so that one buyer is always matched when there are s̄ sellers. In

order to pin down s̄ we can again make use of Condition 1. In particular, we set s̄, to be the lowest value

such that mt ≤ bt, for all t.

The intuition behind the identification argument is as follows: the observed correlation between s and

m informs us on ∂m(s, b)/∂s, since the sensitivity of matches to changes in sellers is observed and s is

independent of b by assumption; then, due to homogeneity, this derivative also delivers the derivative

∂m(s, b)/∂b; and once these derivatives are known, integration leads to the matching function, which can

be inverted to provide the number of buyers.

In closing, it is worth noting that the estimation can be readily applied to the case of decreasing or

increasing returns to scale, with a known degree of homogeneity, k 6= 1.6

Instruments

Assumption 2 requires that s, b are independent. This assumption may be violated in spatial models

where sellers s and buyers b are determined jointly in equilibrium. In this section we show how relax this

assumption using an instrument z that shifts the number of sellers exogenously.7 For instance, in BKP,

we use unpredictable weather conditions, in particular ocean wind speed, as an instrument. The intuition
6One needs to be cautious of the data range, as homogeneity of degree k 6= 1 cannot always be reconciled with the

fundamental requirement of Condition 1. Indeed, consider k > 1. We have that:

m (as, ab) = akm(s, b) ≤ min {as, ab} = amin {s, b}

for all a > 0. Therefore, ak−1m(s, b) ≤ min {s, b} or log a ≤ 1
(k−1) log

(
min{s,b}

m(s,b)

)
, where k − 1 > 0 and log

(
min{s,b}

m(s,b)

)
> 0

since min{s,b}
m(s,b) > 1. Homogeneity requires that the property hold for all a > 0, but here we see that a must be constrained

for the property m (s, b) ≤ min {s, b} to hold. Similar arguments can show that the same problem arises for k ≤ 0.
7Here, we employ non-separable instrumental variables techniques (e.g. Chesher, 2003, Chernozhukov and Hansen, 2005,

Chernozhukov et al., 2007 and Imbens and Newey, 2009; for an application of these techniques similar to ours, see Bajari
and Benkard, 2005).
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for the instrument is that wind affects the speed at which ships travel and therefore exogenously shifts

the supply of ships at port. Similarly, in the taxi case, one might exploit the shift change or congestion

in distant locations within the city; we return to this below.

Assumption 2′. An instrument z exists, such that s = h (z, η) and z is independent of η and b.

Under Assumption 2′, the endogeneity between b and s is driven by the correlation between the shock

η and the number of buyers b. In other words, the number of sellers s is independent of the number of

buyers b, conditional on the shock η. We exploit this conditional independence to derive a version of

equation (1) that does not depend on the independence assumption. In particular,

Fm|s=st
(mt|s = st, ηt) = Pr (m (s, b) ≤ mt|s = st, ηt)

monotonicity = Pr
(
b ≤ m−1 (s,mt) |s = st, ηt

)
cond. independence = Pr

(
b ≤ m−1 (st,mt) |ηt

)
= Fb (bt|ηt) (4)

Equation (4) can be used to recover the unobservables in two steps. In the first step, the relation

s = h (z, η) is used to recover the realizations of η, {η̂t}Tt=1. In practice this can be done regressing flexibly

the number of sellers s on the instrument, z, and setting {η̂t}Tt=1 equal to the regression residuals. In the

second step, similarly to above, one can recover the unknowns of interest by integrating over η both sides

of equation (4).8

Parametric Matching Function

Although the nonparametric nature of this procedure has important benefits as already discussed, one

may in fact prefer a parametric matching function despite it being more restrictive. This could be either

due to some prior knowledge of the form of the matching process, or due to the need to extrapolate

substantially in policy analysis, or because of the analytical convenience of the parametric form when

used in a structural setting.

We briefly discuss how one might recover both the number of buyers and the matching function

parameters in the case of a Cobb-Douglas matching function with constant returns to scale. This
8It is clear from equation (4) that the procedure does not require integrating out the error term η. However, this may be

the best approach for efficiency.
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specification is the most commonly used functional form assumption in the matching function estimation

literature (Petrongolo and Pissarides, 2001, Elsby et al., 2015).

In particular, let

mlt = Als
αl
lt b

1−αl
lt

where Al is a parameter capturing the matching efficiency in region l, while αl and 1−αl are the elasticities

of matches with respect to sellers and buyers respectively. Then we rewrite

log (mlt) = log (Al) + (1− αl) log blt + αl log slt (5)

= αl0 + εlt + αl log slt.

Using an instrument for slt, we can immediately recover αl using the above specification. In order to

recover the number of buyers as well, blt, note that since,

αl0 + εlt = log (Al) + (1− αl) log blt,

in order to separately identify blt, from the matching efficiency, Al, an additional assumption is necessary.9

Moreover, the Cobb-Douglas specification nicely illustrates that it is not possible to separately identify

blt from the degree of returns to scale αl0 of the matching function (see equation (5)).

3 Applications

Shipping:

In BKP we consider the role of transportation costs in world trade. In particular, we divide world ports

into 15 regions, which correspond to the L locations. In our setup, meetings between empty ships and
9If we normalize log (Al) = Kl, we can back out the number of buyers:

αl0 + εlt −Kl

1− αl
= log blt.

For instance, similar to the non-parametric specification with CRS discussed above, we can set Kl such that log (blt) >
log (mlt), or Kl ≤ − (1− αl) log (mlt)+αl0 +εlt. Note that this assumption is equivalent to assuming that the lowest number
of buyers necessary to form one match when there is one seller, is

log
(
b̄l

)
= − Kl

1− αl
.
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potential exporters are governed by a region-specific matching function. Using satellite AIS (Automatic

Identification System) data from exactEarth Ltd we have information on ships’ position (longitude and

latitude), speed and level of draft (the vertical distance between the waterline and bottom of the ship’s

hull) at intervals of at most six minutes (see also Adland and Jia, 2016). The draft variable is particular

important for our purposes, as it allows us to identify whether ships are loaded or not at any point in

time.

Following the notation introduced above, in each region we effectively observe the number of matches,

m (loaded ships) and the number of sellers, s (empty ships looking for cargo) and we are looking to recover

the region-specific matching function, m (.) and the number of buyers, b (potential exporters). In our

baseline specification we assume a CRS matching function, so we do not need to make any assumptions

on the distribution of buyers or assume a specific functional form for the matching function. In this

setup assuming independence between buyers and sellers (ships and exporters) is not plausible, as the

economic forces that affect the number of ships in a region likely also affect the number of exporters. We

therefore follow the instrumental variable approach discussed above. In particular, we use unpredictable

sea weather shocks that shift the arrival of ships at a port, but do not affect exporters at land.10 As

a robustness, we consider the case where instead of imposing CRS on the matching function we make

a functional form assumption on the distribution of buyers (exporters). In particular, we assume that

the number of exporters is distributed according to a Poisson distribution. Our results are fairly similar

and not surprisingly, the implied returns to scale on the matching function is roughly equal to one, even

though we do not impose CRS.

In addition, in Brancaccio et al. (2019) we examine the (constrained) efficiency of decentralized trans-

portation markets and apply our results to the shipping environment described here. We find that allowing

for a flexible matching function is key in accurately recovering the welfare implications of search frictions

and correctly evaluating optimal policies.

Taxis:

In recent work (e.g. Buchholz, 2018 and Frechette et al., 2018) matching functions have been estimated in

the context of NYC taxicabs. The city blocks are divided into a number of different regions corresponding
10We divide the sea surrounding each region into zones; for each zone we use information on the wind speed at different

distances from the coast and in different directions. To obtain the unpredictable component of weather we run a VAR
regression of these weather indicators. The results are robust to the lag structure, as well as estimating jointly for neighboring
zones.
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to the L locations. Again, each location may have its own matching function.11 The data (from the Taxi

and Limousine Commission) contain every taxi ride realized in the city, including the origin, destination

and time of the day. In other words, the data provides the number of matches mlt, but it does not provide

a direct measure of the searching taxicabs, slt (unlike BKP where the AIS data provide both full and

empty ships). It is however possible to create a measure of searching taxicabs under certain assumptions.

In particular, we propose the following measure for slt. Since the entire history of rides is observed,

we observe the time between each drop-off and the next pick-up for a given taxi. Therefore we can build

a conservative measure of the waiting times using the lag between consecutive drop-offs and pick-ups in

the same region. Let plt denote the match probability for cabs. Then, the wait time is equal to 1/plt and

is observed in our data, modulo some assumptions about what drivers do between consecutive trips.12

Note however that plt = mlt/slt and thus we can recover the number of searching cabs from slt = mlt/plt.

Finally, as the distribution of taxicabs and passengers over space is determined endogenously in equilib-

rium, the independence assumption between slt and blt is likely not valid in this setup and an instrument

is required to estimate the matching function. Again, a supply side shifter will suffice; for instance,

Frechette et al. (2018) use the drivers’ shift change, as well as the lagged number of active cabs.13 An-

other potential instrument may involve traffic conditions in distant regions, that affect the supply of taxis

in a given region.

Bike-sharing schemes:

Users of bike sharing schemes, which have become quite popular in recent years, also face search frictions:

a bike may be available nearby or available bikes may be located elsewhere, but that information is not

often readily available. As in the previous applications, it is convenient to capture the matching process

using a matching function (see for instance Cao et al., 2018). The available data in this case usually

includes when a user finds a bike (matches, mt), as well as the number of available, unused bikes (st),

but does not include users that are searching for a bike (bt). Given the data availability, the procedure

outlined above is therefore well-suited to both obtain the unknown side of the market (users searching
11For instance, this is the setup in Buchholz (2018). Frechette et al. (2018) handle the matching process somewhat

differently. In particular, they assume a specific city-wide matching function which is given by a micro-simulation of driver
and passenger behavior; in other words, they assume the matching function is known and recover only the hailing passengers.

12For instance, the researcher has to take a stance on whether a long interval between two consecutive trips is search time
or a coffee break. However, this assumption is required anyway in the estimation of these models (e.g. Frechette et al. (2018)
make such assumptions when modeling search/wait times; Buchholz (2018) also makes such assumptions when modeling
taxicab search decisions).

13In NYC, practically all shifts change at the same time, leading to a “witching hour” around 5pm with few cabs and
many searching passengers. Frechette et al. (2018) argue that the shift change is timed so that the day shift and the night
shift have similar returns on average.
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for bikes), as well as flexibly recover the matching process. Similarly to other applications, an instrument

is needed. As before, conditions in other markets affects the availability of bikes in a given location,

providing a plausible instrument.

Exporters and Importers:

The trade literature has recently focused on the implications of search frictions in the formation of matches

between importers and exporters (see for instance Eaton et al., 2014 and Eaton et al., 2016). As discussed

above, a matching function provides a tractable representation of this process (see for instance Krolikowski

and McCallum, 2018). The available data often contains the resulting matches, as well as the identity

of the exporter and importer of the match, but does not provide information on who is currently (still)

searching. If we were to make additional assumptions on one side of the market, such as for instance

that existing exporters are always searching for new importers, then the above procedure can be used to

flexibly recover the matching function, as well as the number of searching importers.

4 Conclusion

We outline an estimation approach to matching functions in the context of spatial interactions. This ap-

proach is well-suited for several such markets and we discuss a number of potential applications, including

taxis, shipping, bike-sharing and import-exporter matching. In addition, we explore several practical is-

sues. In particular, we propose potential instruments in the context of the above applications. Moreover,

in the popular case of taxis, where idle taxis are not directly observed, we propose an approximation to

the number of searching taxis using the taxi wait time. It should be noted that this list of examples is

not exhaustive, and other applications are possible, such as the matching of shipments to trucks.
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